1° Soit (X,Y) un couple de variables aléatoires réelles discrètes, définies sur un espace probabilisé $(\Omega,\mathcal{A},\mathbb{P})$. Déterminer la loi de Z=g(X,Y), où g est une fonction définie sur l'ensemble $(X,Y)(\Omega)$. Déterminer la loi de la somme quand X et Y sont indépendantes.

On considère deux variables aléatoires X et Y discrètes définies sur l'espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$. On considère une partie D (respectivement Δ) de \mathbb{R} , en bijection avec \mathbb{N} , dans laquelle X (respectivement Y) prend presque sûrement ses valeurs, et on indexe bijectivement les éléments de D (respectivement Δ) de sorte que $D = \{x_n, n \in \mathbb{N}\}$ (respectivement $\Delta = \{y_n, n \in \mathbb{N}\}$). On suppose que X et Y sont indépendantes et que X et X + Y ont même loi.

- 2° a) On considère une série à termes positifs $\sum_{n\geqslant 0}a_n$, qui est convergente. Justifier l'existence du nombre $M=\max_{n\in\mathbb{N}}(a_n)$.
- b) En déduire que l'ensemble $\{\mathbb{P}([X=x]), x \in \mathbb{R}\}$ admet un plus grand élément. Soit alors a un réel tel que $\mathbb{P}([X=a]) = \operatorname{Max}\{\mathbb{P}([X=x]), x \in \mathbb{R}\}$.
- $3\,{}^{\circ}$ a) Montrer que, pour tout $y\in\mathbb{R},\;\mathbb{P}ig([X=a-y]ig)=\mathbb{P}ig([X=a]ig)$ ou $\mathbb{P}ig([Y=y]ig)=0$.
 - b) En déduire que la variable aléatoire Y est discrète « finie ».
- 4° Soit μ un réel appartenant à l'ensemble $\left\{y\in\mathbb{R}\ ,\ \mathbb{P}ig([Y=y]ig)
 eq 0
 ight\}$. Montrer que, pour tout $n\in\mathbb{N},$ $\mathbb{P}ig([X=a-n\mu]ig)=\mathbb{P}ig([X=a]ig)$.
- $5\,^{\circ}\,$ Montrer que la variable Y est presque sûrement nulle.

2 - Exercice sans préparation

Soit f et g deux endomorphismes d'un espace euclidien E, qui commutent. On suppose que les matrices S et T de f et g dans une base orthonormale sont respectivement symétrique et antisymétrique, c'est-à-dire vérifient :

$${}^tS = S$$
 et ${}^tT = -T$.

Montrer que, pour tout $x \in E$, on a :

$$f(x) \perp g(x)$$
 et $||(f-g)(x)|| = ||(f+g)(x)||$.

1° Définition et convergence d'une série géométrique. Donner les formules de sommation d'une série géométrique et de ses dérivées successives.

Une urne contient n jetons numérotés de 0 à n-1. On tire un à un, avec remise et au hasard trois jetons dont les numéros sont notés X,Y et Z respectivement. On tire ensuite trois autres jetons, un à un, sans remise, et on note A,B et C respectivement les numéros obtenus. On pose

$$p_n = \mathbb{P}ig([X+Y=Z]ig) \quad \text{et} \quad q_n = \mathbb{P}ig([A+B=C]ig) \;.$$

- 2° a) Calculer p_n .
 - b) Calculer q_n en distinguant les cas n pair et n impair.
 - c) Montrer que $\frac{p_n}{q_n} \to 1$ lorsque $n \to +\infty$.
- 3° a) Calculer $r_n = \mathbb{P}([X+Y+Z=n-1])$.
 - b) Soit $s \in \mathbb{R}_+^*$. Montrer que

$$\mathbb{E}(s^{X+Y+Z}) = rac{1}{n^3} \left[rac{1-s^n}{1-s}
ight]^3 \ .$$

c) Retrouver alors la valeur de r_n à l'aide de la formule ci-dessus.

■ 2 - Exercice sans préparation

Soit E un espace euclidien de dimension n. On note $\langle \ , \ \rangle$ le produit scalaire et $\| \ \|$ la norme associée. Soit f un endomorphisme de E qui vérifie la propriété suivante :

$$orall \; (x,y) \in E^2 \qquad \langle x,y
angle = 0 \; \Rightarrow \; \langle f(x),f(y)
angle = 0 \; .$$

Montrer qu'il existe $k \in \mathbb{R}^+$ tel que pour tout $x \in E, \; \|f(x)\| = k \; \|x\|$.

1° Conditions pour qu'une matrice réelle soit diagonalisable.

Soit n un entier supérieur ou égal à 2.

 2° Soit A la matrice de $M_n(\mathbb{R})$ définie par :

- a) Déterminer les valeurs propres de A ainsi que les sous-espaces propres correspondants. La matrice A est-elle diagonalisable ?
- b) La matrice A est-elle inversible?

Dans la suite (E, \langle , \rangle) désigne un espace vectoriel euclidien de dimension n, et (u_1, u_2, \ldots, u_n) une suite de n vecteurs normés (c'est-à-dire de norme 1) de E, tels que

$$\forall (i,j) \in \llbracket 1,n
rbracket^2, \quad i
eq j \ \Rightarrow \ \lVert u_i - u_j
Vert = 1.$$

- 3° a) Pour i et j dans [1, n], calculer $\langle u_i, u_j \rangle$.
 - b) Montrer que $(u_1, u_2, ..., u_n)$ est une base de E.
 - c) La conclusion de b) subsiste-t-elle, si on ne suppose plus que tous les vecteurs u_i sont normés mais qu'ils sont seulement de même norme non nulle?
- $4^{\,\rm o}$ Soit $(e_1,e_2,...,e_n)$ une base orthonormée de E et f un endomorphisme de E tel que, pour tout $i\in [\![1,n]\!],\ f(e_i)=u_i$.
 - a) Montrer que f est un automorphisme de E.
 - b) A-t-on, pour tout x de E et tout y de E, $\langle f(x), f(y) \rangle = \langle x, y \rangle$?

■ 2 - Exercice sans préparation

Déterminer une suite $(X_n)_{n\in\mathbb{N}^*}$ de variables aléatoires, chacune prenant deux valeurs, telle que la suite $(X_n)_{n\in\mathbb{N}^*}$ converge en probabilité vers la variable nulle mais telle que la suite $(\mathbb{E}(X_n))_{n\in\mathbb{N}^*}$ converge vers 1 et la suite $(\mathbb{V}(X_n))_{n\in\mathbb{N}^*}$ tende vers $+\infty$.

Les variables aléatoires sont supposées définies sur un même espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$.

On admet que si U et V sont deux variables aléatoires à densité, indépendantes, admettant une espérance, alors UV admet une espérance et $\mathbb{E}(UV) = \mathbb{E}(U) \mathbb{E}(V)$.

1º Soit X et Y deux variables aléatoires à densité ayant un moment d'ordre 2. Quel lien existe-t-il entre l'indépendance de X et Y et leur non-corrélation (c'est à dire la propriété Cov(X,Y)=0)?

Soit $(X_i)_{i\in\mathbb{N}^*}$ une suite de variables aléatoires mutuellement indépendantes, suivant chacune la loi normale de moyenne m et d'ecart-type σ . Soit, pour n entier non nul,

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$
 et $S_n = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2$.

- 2° Quelle est la loi de \overline{X}_n ?
- 3° Montrer que $(\overline{X}_n)_{n\in\mathbb{N}^*}$ est une suite convergente d'estimateurs sans biais de m.
- 4° Montrer que $\ \, orall \, n \in \mathbb{N}^*, \ \ \, \mathbb{E}(S_n) = rac{1}{n} \sum_{i=1}^n \mathbb{V}ig(X_i \overline{X}_nig) \, .$
- 5° En déduire la valeur du réel a tel que la variable aléatoire $T_n = a S_n$ soit un estimateur sans biais de σ^2 .
- 6° On suppose ici que m=0 et on se propose de montrer que \overline{X}_n et S_n sont non-corrélées.
 - $\text{a) Montrer que} \quad \forall \ n \in \mathbb{N}^*, \quad \mathbb{E}\big(\overline{X}_n \, S_n\big) = \frac{1}{n^2} \, \mathbb{E}\left[\Big(\sum_{i=1}^n X_i\Big) \, \Big(\sum_{j=1}^n X_j^2\Big)\right] \mathbb{E}\big(\overline{X}_n^3\big) \, .$
 - b) En déduire que $\forall n \in \mathbb{N}^*, \quad \mathbb{E}(\overline{X}_n S_n) = \frac{n-1}{n^3} \mathbb{E}(\sum_{j=1}^n X_j^3)$ et conclure.

■ 2 - Exercice sans préparation

Soit n un entier naturel non nul et \mathcal{S}_n l'ensemble des matrices symétriques réelles de taille n. Soit A et B dans \mathcal{S}_n . On dit que $A \leq B$ si et seulement si pour tout vecteur colonne $X \in \mathcal{M}_{n,1}(\mathbb{R})$, on a ${}^t XAX \leq {}^t XBX$.

Montrer que si A, B et C sont trois éléments de \mathcal{S}_n , on a :

(i)
$$[A \leqslant B \text{ et } B \leqslant C] \Rightarrow A \leqslant C$$
;

(ii)
$$\left[A\leqslant B \text{ et } B\leqslant A\right]\Rightarrow A=B$$
.

1° Rappeler la définition d'un endomorphisme diagonalisable et donner une condition nécessaire et suffisante pour qu'un endomorphisme soit diagonalisable.

Soit n un entier naturel non nul et $E=\mathbb{R}_n[X]$. Soit arphi l'application définie sur E par

$$\forall P \in E, \quad [\varphi(P)](X) = P(X+1) - P(X).$$

- 2° a) Vérifier que $\varphi \in \mathcal{L}(E)$ et expliciter sa matrice A dans la base canonique $\mathcal{B} = (1, X, X^2, \dots, X^n)$ de E. On précisera l'élément $a_{i,j}$ de A, situé à la i^{e} ligne et à la j^{e} colonne.
 - b) Déterminer le noyau et l'image de φ .
 - c) Déterminer un polynôme annulateur de φ .
 - d) Étudier la diagonalisabilité de φ .
- 3° a) Soit $P \in E$. Montrer que :

$$\varphi^n(P)(X) = (-1)^n \sum_{k=0}^n \left[(-1)^k \binom{n}{k} P(X+k) \right],$$

où φ^n désigne la composée n fois : $\varphi \circ \varphi \circ \cdots \circ \varphi$.

b) En déduire, pour $j \in \{0,1,\ldots,n-1\}$, la valeur de :

$$S_j = \sum_{k=0}^n \left[(-1)^k \binom{n}{k} k^j \right] .$$

 4° Retrouver le résultat de la question précédente pour $j \in \{0, 1, 2\}$ en considérant la fonction f_n définie sur \mathbb{R} par $f_n(x) = (1-x)^n$.

2 - Exercice sans préparation

Soit X et Y deux variables aléatoires indépendantes définies sur un même espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$ suivant toutes deux une loi géometrique de paramètre $p \in]0,1[$. Pour tout $\omega \in \Omega$, on considère la matrice

$$M(\omega) = \begin{pmatrix} X(\omega) & Y(\omega) \\ Y(\omega) & X(\omega) \end{pmatrix}.$$

Déterminer la probabilité

$$\mathbb{P}\left\{\; \omega \in \Omega \,,\; M(\omega) \; ext{inversible} \;
ight\}.$$

1° Définition des matrices semblables. Donner la formule de changement de base pour les matrices d'endo-

Une urne blanche contient n boules blanches et une urne rouge n boules rouges. On tire à chaque étape au hasard une boule de chaque urne et on remet chacune de ces boules dans l'urne de laquelle on ne l'a pas tirée. Pour $k\in\mathbb{N},$ on note X_k le nombre de boules blanches dans l'urne blanche à l'issue de l'étape k. En particulier, $X_0 = n$ et $X_1 = n - 1$ (avec probabilité 1). On pose pour k entier positif

$$Z_k = \left(egin{array}{c} \mathbb{P}([X_k=0]) \ \mathbb{P}([X_k=1]) \ dots \ \mathbb{P}([X_k=n]) \end{array}
ight).$$

Trouver une matrice A à coefficients entiers telle que

$$\forall k \in \mathbb{N}^*, \quad Z_k = \frac{1}{n^2} A Z_{k-1}.$$

On pose par la suite $B = A/n^2$.

- On suppose dans cette question que n=2. Déterminer les valeurs propres et les vecteurs propres de la matrice B et en déduire pour k fixé la valeur de $\mathbb{E}(X_k)$.
- 4° Soit $k \in \mathbb{N}^*$. Comment peut-on interpréter chacun des coefficients de la matrice B^k ? Montrer qu'il existe $k_0 \in \mathbb{N}^*$ tel que tous les coefficients de B^k sont strictement positifs pour tout $k \ge k_0$.
- Calculer $\mathbb{P}([X_n = 0])$. Que retrouve-t-on?

■ 2 - Exercice sans préparation

Soit lpha un réel strictement positif. Montrer que pour tout réel x positif, il existe un unique réel positif noté

$$f(x) e^{f(x)} = x^{\alpha}.$$

Étudier ensuite la dérivabilité de f, et exprimer f' en fonction de f le cas échéant.

1° Soit X et Y deux variables aléatoires réelles, définies sur un espace de probabilité $(\Omega, \mathcal{A}, \mathbb{P})$, indépendantes et de densités respectives f_X et f_Y . Donner une expression de la densité de Z = X + Y.

Soit U et V deux variables aléatoires indépendantes de loi uniforme sur [0,1], définies sur un espace de probabilité noté $(\Omega, \mathcal{A}, \mathbb{P})$.

 2° Quelle est la loi de $-\ln(U)$?

Montrer que la densité de la variable aléatoire $Z=-\ln(U)-\ln(V)$ est donnée par

$$f_Z(x) = \begin{cases} x e^{-x} & \text{si } x \geqslant 0 \\ 0 & \text{sinon.} \end{cases}$$

Soit a un réel supérieur ou égal à 1. On définit la matrice

$$M = \left(egin{array}{cc} 1 & -aU \ aV & 3 \end{array}
ight).$$

 3° a) Montrer que la probabilité p que la matrice M ait toutes ses valeurs propres réelles vaut

$$p = \frac{1 + 2\ln(a)}{a^2} \,.$$

- b) Montrer que la probabilité que M soit diagonalisable dans $\mathbb R$ vaut également p.
- 4° Dans cette question, on prend a=1. Pour tout $\omega \in \Omega$, on note $X(\omega)$ la plus grande valeur propre de $M(\omega)$. Déterminer une densité de X.

■ 2 - Exercice sans préparation

Soit E un \mathbb{R} -espace vectoriel de dimension finie n. Montrer que E n'est pas la réunion finie de sous-espaces vectoriels stricts (c'est à dire distincts de E).

 1° Rappeler la définition et les propriétés de la fonction Γ .

Soit b un réel et φ la fonction de \mathbb{R}^+ dans \mathbb{R} définie par

$$\varphi(x) = (x+b) e^{-x}.$$

L'objet de l'exercice est de chercher toutes les fonctions f continues sur \mathbb{R}^+ et vérifiant pour tout x positif la relation :

$$(\mathcal{R}) \qquad f(x) = \varphi(x) + \int_0^{+\infty} \varphi(x+t) f(t) dt.$$

 2° Soit F_1 et F_2 les fonctions définies sur \mathbb{R}^+ par :

$$F_1(x) = e^{-x}$$
 et $F_2(x) = x e^{-x}$.

a) Montrer que la famille (F_1, F_2) est libre dans l'espace vectoriel des fonctions continues sur \mathbb{R}^+ .

Soit E l'espace vectoriel engendré par F_1 et F_2 .

b) On considère l'application Φ qui à toute fonction f de E associe la fonction $\Phi(f)$ définie sur \mathbb{R}_+ par :

$$\Phi(f)(x) = \int_0^{+\infty} \varphi(x+t) f(t) dt.$$

Montrer que l'intégrale qui définit Φ est convergente pour toute fonction f de E.

- 3° Montrer que Φ est un endomorphisme de E et écrire sa matrice dans la base (F_1, F_2) .
 - a) Montrer que Φ est un automorphisme de E et préciser l'automorphisme réciproque.
- 4° Soit f une fonction continue de \mathbb{R}^+ dans \mathbb{R} vérifiant la relation (\mathcal{R}) .
 - a) Montrer que f est élément de E.
 - b) Déterminer l'ensemble des fonctions continues de \mathbb{R}^+ dans \mathbb{R} vérifiant (\mathcal{R}) .

■ 2 - Exercice sans préparation

Soit $(X_k)_{k\in\mathbb{N}^*}$ une suite de variables aléatoires indépendantes et de même loi, définies sur un espace de probabilité $(\Omega, \mathcal{A}, \mathbb{P})$.

On suppose que la loi commune des X_k est la loi exponentielle de paramètre λ .

Soit N une variable aléatoire suivant la loi géométrique de paramètre $p \in [0,1[$. On pose

$$S = \sum_{k=1}^{N} X_k .$$

- 1° Déterminer la loi conditionnelle de S sachant que [N=n].
- 2° En déduire la fonction de répartition puis la loi de S. Vérifier que

$$\mathbb{E}(S) = \mathbb{E}(N) \, \mathbb{E}(X_1)$$
.

 $1\,^{\rm o}\,$ On jette deux dés non pipés simultanément. On note

$$\Omega = \Big\{ (x,y) \,, \; 1 \leqslant x \leqslant 6 \text{ et } 1 \leqslant y \leqslant 6 \Big\}$$

l'ensemble des résultats possibles. On munit Ω de la probabilité uniforme (équiprobabilité des couples (x,y)). On note S la variable aléatoire égale à la somme des chiffres marqués par les deux dés. Déterminer la loi de S; calculer son espérance et sa variance.

- 2° Un joueur lance les deux dés selon le protocole suivant :
 - si S = 7 ou 11, le joueur gagne;
 - si S = 2, 3 ou 12, le joueur perd;
 - si $S=4,\,5,\,6,\,8,\,9$ ou 10, le joueur reprend les deux dés et effectue un second lancer de ces deux dés ;
 - * si ce second jet donne un total de 7, le joueur a perdu,
 - * s'il obtient le même total qu'au premier jet, il a gagné le jeu;
 - st sinon, il reprend les dés et effectue le lancer suivant. Au cours du ou des lancers suivants, il aura gagné le jeu dès qu'il aura retrouvé le total k trouvé au premier jet et il aura perdu s'il marque un total de 7.

On appelle S_i la somme des deux dés obtenue au i-ième jet si celui-ci a eu lieu.

a) Soit n un entier naturel non nul et $k \in \{4,5,6\}$. On suppose que dans le premier jet le joueur a réalisé l'évènement $(S_1 = k)$. Montrer que la probabilité de l'événement : « Le joueur gagne au n-ième jet » vaut :

$$\frac{k-1}{36} \left(\frac{31-k}{36}\right)^{n-2}$$
.

b) En déduire que si le joueur a réalisé $(S_1=k)$ pour $k\in\{4,5,6\}$, la probabilité qu'il gagne le jeu est

$$\mathbb{P}(D_k) = \sum_{n=2}^{+\infty} \frac{k-1}{36} \left(\frac{31-k}{36} \right)^{n-2} .$$

- 3° Soit n un entier naturel non nul et $k \in \{8, 9, 10\}$. On suppose que dans le premier jet le joueur a réalisé l'événement $(S_1=k)$. Calculer la probabilité que le joueur gagne le jeu.
- 4° Calculer la probabilité que le joueur gagne le jeu. Comparer ce résultat avec la valeur 0, 5.

2 - Exercice sans préparation

Soit E un espace vectoriel de dimension finie sur $\mathbb R$ ou $\mathbb C$ et f,g,h trois endomorphismes de E vérifiant :

$$f + g + h = \mathrm{Id}_E$$

et

$$fog = gof = hog = goh = foh = hof$$
.

- 1° Montrer que f, g et h sont des projecteurs.
- 2° Prouver que $\varphi = f + g 2h$ est diagonalisable.
- $3\,^\circ\,$ Donner un exemple d'un tel triplet d'endomorphismes.

Dans cet exercice toutes les variables aléatoires considérées sont définies sur un même espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$ et à valeurs dans \mathbb{N}^* .

Soit X une variable aléatoire qui suit une loi normale d'espérance $m \neq 0$ et de variance égale à 1. On pose $Y = X^2$.

On rappelle que $\Gamma(1/2) = \sqrt{\pi}$.

- $1\,^{\circ}\,$ Rappeler la définition et les propriétés des lois γ et $\Gamma.$
- 2° Déterminer une densité f_Y de Y.
- 3° Montrer que, pour tout $k \in \mathbb{N}$, on a :

$$\Gamma\left(k+\frac{1}{2}\right) = \frac{(2k)!}{2^{2k} \, k!} \sqrt{\pi} \, .$$

 4° Soit Z une variable aléatoire suivant une loi de Poisson de paramètre $m^2/2$. Pour tout $k \in \mathbb{N}$, on note T_k une variable aléatoire réelle telle que $T_k/2$ suive la loi $\gamma(k+1/2)$. On note g_k une densité de T_k .

Montrer que:

$$f_Y(y) = \sum_{k=0}^{+\infty} \Bigl[\mathbb{P}igl([Z=k]igr) g_k(y) \Bigr] \quad ext{si} \quad y>0 \quad ext{et} \quad f_Y(y)=0 \quad ext{sinon}.$$

5° Montrer que:

$$\mathbb{E}(Y) = \sum_{k=0}^{+\infty} \left[\mathbb{P}([Z=k]) \, \mathbb{E}(T_k) \right]$$

et calculer cette valeur.

2 - Exercice sans préparation

Soit $f \in \mathcal{L}(\mathbb{R}^3)$ de matrice dans la base canonique

$$A = egin{pmatrix} 1 & 1 & 1 \ 0 & 0 & 1 \ 0 & 0 & 0 \end{pmatrix}.$$

- $1\,^{\circ}\,$ Déterminer les droites de \mathbb{R}^3 stables par f.
- 2° Soit P un plan stable par f. Montrer que $\dim(f(P)) = 1$. En déduire les plans de \mathbb{R}^3 stables par f.

 $1\,^{\circ}\,$ Définition et propriétés d'un produit scalaire.

On considère l'espace vectoriel $E=\mathbb{R}^n$, muni du produit scalaire canonique (noté $\langle \ , \ \rangle$) et de la norme euclidienne associée.

Soit f et g deux endomorphismes de E tels que

$$\forall x \in E, ||f(x)|| = ||g(x)||.$$

2° Montrer que

$$orall (x,y) \in E^2 \,, \quad \langle f(x), f(y)
angle = \langle g(x), g(y)
angle \,.$$

- 3° On suppose, pour cette question seulement, que l'application f est bijective. Montrer qu'il existe un unique endomorphisme u de E tel que $g=u\circ f$. Montrer de plus que, pour tout x de E, ||u(x)||=||x||.
- 4° On ne suppose plus nécessairement f bijective.
 - a) Montrer que $\operatorname{Ker} f = \operatorname{Ker} g$.
 - b) Soit (f_1, f_2, \ldots, f_r) une base orthonormée de Im f.

 Montrer qu'il existe une famille (e_1, e_2, \ldots, e_r) d'éléments de E telle que, pour tout $i \in [1, r]$, $f_i = f(e_i)$.

 Montrer que la famille (g_1, g_2, \ldots, g_r) définie, pour tout $i \in [1, r]$, par $g_i = g(e_i)$ est une base orthonormée de Im g.
 - c) Justifier que les familles (f_1, f_2, \dots, f_r) et (g_1, g_2, \dots, g_r) peuvent être complétées en des bases orthonormées $\mathcal{F} = (f_1, f_2, \dots, f_n)$ et $\mathcal{G} = (g_1, g_2, \dots, g_n)$ respectivement, de E.

Soit u l'endomorphisme de E tel que

$$\forall i \in \llbracket 1, n \rrbracket, \quad u(f_i) = g_i.$$

- d) Montrer que:
 - pour tout x de E, ||u(x)|| = ||x||;
 - $g = u \circ f$.
- e) L'endomorphisme u ainsi défini est-il unique?

■ 2 - Exercice sans préparation

Soit X et Y deux variables aléatoires définies sur l'espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$, discrètes à valeurs dans \mathbb{N} . On suppose que X et Y sont indépendantes, identiquement distribuées, et qu'elles admettent un moment d'ordre 2.

Les variables X + Y et X - Y sont-elles indépendantes?

Sinon, à quelle condition sur la loi (commune) de X et Y le sont-elles?

 1° Donner deux conditions suffisantes de diagonalisabilité d'une matrice carrée réelle.

On considère trois variables aléatoires réelles X_1, X_2 et X_3 , définies sur le même espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$, centrées et admettant un moment d'ordre 2.

On définit la matrice $M \in \mathcal{M}_3(\mathbb{R})$ par

$$M = ig(m_{i,\,j}ig)_{\substack{1 \leqslant i \leqslant 3 \ 1 \leqslant j \leqslant 3}}, \quad ext{avec} \quad orall ig(i,\,jig) \in \llbracket 1,3
bracket^2, \quad m_{i,\,j} = \mathbb{E}ig(X_iX_jig) \;.$$

- 2° Montrer que la matrice M est diagonalisable.
- 3° Dans cette question seulement, on suppose que les variables aléatoires X_1, X_2, X_3 sont discrètes et indépendantes. Que peut-on dire de la matrice M?
- $4\,^{\rm o}\,$ Montrer que les valeurs propres de M sont positives ou nulles.

Dans la suite, on suppose que

$$M = egin{pmatrix} 2 & -1 & -1 \ -1 & 2 & -1 \ -1 & -1 & 2 \end{pmatrix}.$$

- 5° Déterminer les valeurs propres de M.
- $6^{\,\circ}\,$ Soit Z une variable aléatoire d'espérance nulle; on considère la fonction $\,arphi:\,\mathbb{R}^3 o \mathbb{R}\,$ définie par

$$orall ig(x_1,\,x_2,\,x_3ig) \in \mathbb{R}^3, \quad arphi(x_1,\,x_2,\,x_3ig) = \mathbb{E}ig[ig(Z-x_1X_1-x_2X_2-x_3X_3ig)^2ig] \ .$$

Déterminer la matrice Hessienne de φ en (x_1, x_2, x_3) .

 7° Montrer qu'une condition nécessaire et suffisante pour que φ admette un minimum en $(\alpha_1,\alpha_2,\alpha_3)$ est

$$M \left(egin{array}{c} lpha_1 \ lpha_2 \ lpha_3 \end{array}
ight) = \left(egin{array}{c} \mathbb{E}(ZX_1) \ \mathbb{E}(ZX_2) \ \mathbb{E}(ZX_3) \end{array}
ight)$$

a) Donner une condition nécessaire et suffisante sur Z pour que la fonction φ admette un minimum. On pourra introduire l'endomorphisme u de \mathbb{R}^3 dont la matrice dans la base canonique est M.

■ 2 - Exercice sans préparation

Soit $k \in \mathbb{R}_+^*$.

 1° Montrer que, pour tout $n \in \mathbb{N}^*$, l'équation

$$x^{k+1} + x^k - n = 0$$

admet une solution unique x_n dans \mathbb{R}_+^* .

- 2° Étudier les variations et la limite éventuelle de la suite (x_n) .
- 3° Déterminer un équivalent simple de x_n lorsque n tend vers $+\infty$.