Les sujets suivants, posés aux candidats des options scientifique, économique, technologique et littéraire BL constituent la première version d'un échantillon des sujets proposés lors des épreuves orales du concours 2010.

1 Sujets donnés en option scientifique

Sujet S1 - Exercice

1) Question de cours : Donner une condition nécessaire et suffisante pour qu'une suite réelle décroissante soit convergente.

Soit *n* un entier de \mathbb{N}^* , et M_n la matrice de $\mathcal{M}_n(\mathbb{R})$ définie par :

$$\mathbf{M}_{n} = \begin{pmatrix} 1 & 1 & \dots & \dots & 1 \\ 1 & 0 & \dots & \dots & 0 \\ 0 & 1 & \ddots & & 0 \\ \vdots & & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & 1 & 0 \end{pmatrix}$$

- **2) a)** Montrer que le réel a est valeur propre de M_n si et seulement si le polynôme $P_n(X) = X^n X^{n-1} X^{n-2} \dots 1$ admet a pour racine.
 - **b)** Déterminer alors le sous-espace propre associé à *a*.
- 3) a) Montrer que pour tout entier k supérieur ou égal à 2, le polynôme P_k admet une unique racine dans l'intervalle $]1, +\infty[$; on la note a_k .
 - **b)** Établir la convergence de la suite $(a_k)_{k \ge 2}$. Déterminer sa limite.
- **4) a)** Montrer que, pour tout p de \mathbb{N}^* , le polynôme P_{2p} admet une racine unique dans \mathbb{R}^{-*} ; on la note b_p .
 - **b)** Établir la décroissance, puis la convergence de la suite $(b_p)_{p \in \mathbb{N}^*}$ et déterminer sa limite ℓ .
 - c) Déterminer un équivalent simple de la suite $(b_p \ell)_{p \in \mathbb{N}^*}$.
- **5) a)** Déterminer les valeurs de n pour lesquelles la matrice M_n est diagonalisable dans $\mathcal{M}_n(\mathbb{R})$.
 - **b)** Déterminer les valeurs de n pour lesquelles la matrice M_n est diagonalisable dans $\mathcal{M}_n(\mathbb{C})$.

Sujet S 1 - Exercice sans préparation

Soit X une variable aléatoire réelle définie sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$ de loi uniforme sur le segment [0,1].

Soit n un entier supérieur ou égal à 2. Soit $(X_1, X_2, ..., X_n)$ un n-échantillon i.i.d. de la loi de X.

- 1) Déterminer une densité de $Y_k = -\max(X_1, X_2, ..., X_k)$, pour tout k de [1, n-1].
- **2)** En déduire $\mathbb{P}([X_n \ge X_1] \cap \cdots \cap [X_n \ge X_{n-1}])$.

Sujet S 2 - Exercice

Soit p un réel donné de]0,1[. On pose q = 1 - p.

On considère un couple (U,T) de variables aléatoires discrètes définies sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$, dont la loi de probabilité est donnée par : pour tout entier $n \ge 2$, pour tout $t \in \mathbb{Z}$,

$$\mathbb{P}\left([\mathsf{U}=n]\cap[\mathsf{T}=t]\right) = \left\{ \begin{array}{ll} p^2q^{n-2} & \text{si } |t| \leq n-2 \text{ et si } n, |t| \text{ de même parit\'e} \\ 0 & \text{sinon.} \end{array} \right.$$

- 1) Question de cours : Loi d'un couple de variables aléatoires discrètes. Lois marginales, lois conditionnelles.
- 2) Vérifier que $\sum_{n=2}^{+\infty} \sum_{\substack{|t| \le n-2 \\ n, |t| \text{ de même parité}}} p^2 q^{n-2} = 1.$
- 3) a) Déterminer la loi marginale de U.
 - **b)** En distinguant les trois cas t = 0, t > 0 et t < 0, montrer que la loi marginale de T est donnée par :

pour tout
$$t \in \mathbb{Z}$$
, $\mathbb{P}([T = t]) = \frac{pq^{|t|}}{1+q}$.

- c) Calculer $\mathbb{E}(T)$.
- 4) Soit *n* un entier supérieur ou égal à 2.
 - a) Déterminer la loi conditionnelle de T sachant [U = n].
 - **b)** Calculer l'espérance conditionnelle $\mathbb{E}(T/U = n)$ de T sachant [U = n].
- 5) a) Justifier l'existence de $\mathbb{E}(U)$ et de $\mathbb{E}(UT)$. Calculer **Cov**(U,T).
 - b) Les variables aléatoires U et T sont-elles indépendantes?

Sujet S 2 - Exercice sans préparation

Soit f l'application définie sur $\mathbb{R}[X]$ par :

$$\forall P \in \mathbb{R}[X], \quad f(P) = 3XP + (X^2 - X)P' - (X^3 - X^2)P'',$$

où P' et P'' désignent les dérivées première et seconde de P.

- 1) Montrer que f est un endomorphisme de $\mathbb{R}[X]$.
- 2) Déterminer $f(X^k)$ ($k \in \mathbb{N}$). Que peut-on dire du degré de $f(X^k)$?
- 3) f est-elle injective? surjective?
- **4) a)** Déterminer $n \in \mathbb{N}$ tel que $\mathbb{R}_n[X]$ soit stable par $f(\mathbb{R}_n[X])$ est le \mathbb{R} -espace vectoriel des polynômes réels de degré $\leq n$).

2

b) n étant ainsi choisi, soit ϕ l'endomorphisme induit par f sur $\mathbb{R}_n[X]$. ϕ est-il diagonalisable?

Sujet S3 - Exercice

Soit a, b, c, α quatre nombres réels tels que $a \neq b$ et f l'application de $\mathbb{R}[X]$ dans $\mathbb{R}[X]$ définie par :

$$f(P) = (X - a)(X - b) P' + \alpha(X - c) P.$$

- 1) Question de cours : Equations différentielles h'(x) = h(x) g(x).
- **2)** Montrer que f est un endomorphisme de $\mathbb{R}[X]$.
- 3) Pour tout $n \in \mathbb{N}$, on désigne par $\mathbb{R}_n[X]$ l'espace vectoriel des polynômes réels de degré $\leq n$ (en attribuant au polynôme nul le degré $-\infty$). Déterminer une condition nécessaire et suffisante sur a, b, c, α, n pour que $\mathbb{R}_n[X]$ soit stable par f, c'est-à-dire que $f(\mathbb{R}_n[X]) \subset \mathbb{R}_n[X]$.

Dans toute la suite du problème, on suppose cette condition réalisée et on note f_n l'endomorphisme induit par f sur $\mathbb{R}_n[X]$.

- **4)** Soit λ un réel.
 - **a)** Trouver deux réels A et B indépendants de *x*, qu'on exprimera en fonction de *n*, *a*, *b*, *c*, λ, tels que :

$$\forall x \notin \{a,b\}, \ \frac{nx-nc+\lambda}{(x-a)(x-b)} = \frac{A}{x-a} + \frac{B}{x-b}.$$

- **b)** Donner toutes les valeurs de λ telles que $(x-a)^A(x-b)^B$ soit un polynôme de $\mathbb{R}_n[X]$.
- 5) Trouver les valeurs propres et les sous-espaces propres de f_n . f_n est-il diagonalisable? f_n est-il bijectif?

Sujet S 3 - Exercice sans préparation

- 1) Soit *n* un entier strictement supérieur à 3.
 - n personnes jouent à pile ou face avec une pièce équilibrée et de façon indépendante. L'expérience est modélisée par un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$ qu'on précisera.
 - Quelle est la probabilité qu'une personne exactement obtienne un résultat différent des n-1 autres personnes (événement noté A)?
- 2) Un jeu consiste à réitérer l'expérience précédente (appelée "partie") jusqu'à la réalisation de A. On suppose que cette expérience est modélisée par un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$. Soit X la variable aléatoire à valeurs entières désignant le nombre de parties jouées si le jeu s'arrête et prenant la valeur 0 sinon. Donner la loi de X, son espérance et sa variance.

Sujet S 4 - Exercice

Soit n un entier supérieur ou égal à 2. On note E l'espace vectoriel réel des polynômes à coefficients réels de degré inférieur ou égal à n.

Si $P \in E$, on note u(P) le polynôme Q tel que, pour tout x réel, Q(x) = P(x+1).

- 1) Question de cours : Définition et propriétés d'une matrice inversible.
- **2) a)** Montrer que *u* définit un endomorphisme de E.
 - **b)** Déterminer la matrice A de u dans la base canonique de E. Justifier l'existence de A^{-1} et la calculer.
 - c) Déterminer A².
 - **d)** L'endomorphisme *u* est-il diagonalisable?
- **3) a)** Déterminer, selon les valeurs du réel *a*, tous les polynômes P de E tels que pour tout *x* réel,

$$P(x+1) + aP(x) = 0$$

b) Déterminer, selon les valeurs des réels *a* et *b*, tous les polynômes P de E tels que pour tout *x* réel,

$$P(x+2) + aP(x+1) + bP(x) = 0$$

- **4)** On note $d = u Id_E$, où Id_E désigne l'endomorphisme identité de E.
 - a) Déterminer Im d. Que vaut d^{n+1} ? (d^{n+1} désigne l'endomorphisme $d \circ d \circ \cdots \circ d$ la lettre d étant répétée n+1 fois).
 - **b)** En déduire l'existence de $(a_0, ..., a_n) \in \mathbb{R}^{n+1}$ tels que, pour tout P appartenant à E et tout x réel,

$$P(x+n+1) = \sum_{k=0}^{n} a_k P(x+k)$$

c) Si $P \in E$, on pose s(P) = X.d(P). Montrer qu'on définit ainsi un endomorphisme de E. Cet endomorphisme s est-il diagonalisable?

Sujet S 4 - Exercice sans préparation

1) Montrer qu'il existe un réel c pour lequel la fonction f définie par :

$$\forall x \in \mathbb{R}, \, f(x) = \frac{c}{1 + x^2}$$

est une densité de probabilité.

- 2) Une variable aléatoire réelle ayant une telle densité possède-t-elle une espérance?
- 3) Montrer que si X est une variable aléatoire réelle de densité f, X et 1/X ont même loi.

Sujet S 5 - Exercice

- 1) Question de cours : Rappeler la définition d'une série convergente. Démontrer qu'une série à termes positifs est convergente si et seulement si la suite de ses sommes partielles est majorée. Cette équivalence demeure-t-elle valable pour les séries à termes réels de signe quelconque?
- **2)** Soit $(u_n)_{n \in \mathbb{N}^*}$ et $(v_n)_{n \in \mathbb{N}^*}$ deux suites réelles positives. Pour tout $n \in \mathbb{N}^*$, on pose :

$$\begin{cases} m_n = \min\{u_n, v_n\} \\ M_n = \max\{u_n, v_n\} \end{cases}$$

Démontrer que, si les séries $\sum_{n\geqslant 1}u_n$ et $\sum_{n\geqslant 1}v_n$ sont convergentes, les séries $\sum_{n\geqslant 1}m_n$ et $\sum_{n\geqslant 1}M_n$

le sont aussi, et leurs sommes vérifient : $\sum_{n=1}^{+\infty} m_n + \sum_{n=1}^{+\infty} \mathbf{M}_n = \sum_{n=1}^{+\infty} u_n + \sum_{n=1}^{+\infty} v_n$.

- 3) On suppose **désormais** que, pour tout $n \in \mathbb{N}^*$: $\begin{cases} u_n = \frac{2}{(n+1)(n+2)} \\ v_n = \frac{4}{5^n} \end{cases}$
 - a) Démontrer que les deux séries $\sum_{n\geqslant 1}u_n$ et $\sum_{n\geqslant 1}v_n$ sont convergentes, et que leurs sommes sont égales.
 - **b)** Prouver que, pour tout $n \ge 2$, on a : $v_n \le u_n$.
- 4) Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires indépendantes, définies sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$, telles que, pour tout $n \in \mathbb{N}^*$, les évènements $[X_n = u_n]$ et $[X_n = v_n]$ soient des parties complémentaires de Ω , de même probabilité $\frac{1}{2}$.
 - a) Démontrer que, pour tout $\omega \in \Omega$, la série $\sum_{n \ge 1} X_n(\omega)$ est convergente et que sa somme $\sum_{n=1}^{+\infty} X_n(\omega)$ est comprise entre $\frac{8}{15}$ et $\frac{22}{15}$.
 - **b)** Démontrer que $\left[\sum_{n=1}^{+\infty} X_n = \frac{22}{15}\right]$ et $\left[\sum_{n=1}^{+\infty} X_n = 1\right]$ sont des événements de probabilité nulle.

Sujet S 5 - Exercice sans préparation

- 1) La matrice $A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ est-elle diagonalisable?
- 2) Soit E un \mathbb{R} -espace vectoriel de dimension 3 et u un endomorphisme de E tel que u^2 soit un projecteur de rang égal à 1.
 - a) Montrer que 0 est valeur propre de u et que u possède au plus une autre valeur propre, égale à +1 ou à -1.
 - **b)** Montrer que, si *u* admet 1 pour valeur propre et n'est pas lui-même un projecteur, il existe une base de E dans laquelle la matrice de *u* est A.

Sujet S 6 - Exercice

- 1) Question de cours : Rappeler les formules de Taylor-Lagrange (égalité et inégalité), ainsi que leurs conditions de validité.
- **2)** On note f la fonction définie sur \mathbb{R} par :

$$f(x) = \begin{cases} x e^{\frac{-x^2}{2}} & \text{si } x > 0 \\ 0 & \text{si } x \le 0 \end{cases}$$

- a) Calculer la dérivée à droite de f en 0.
- **b)** Montrer que *f* est une densité de probabilité.
- c) Soit X une variable aléatoire définie sur un espace probabilisé (Ω, \mathcal{A}, P) , admettant f pour densité. Montrer que X possède une espérance et une variance, et les calculer.
- 3) Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires définies sur $(\Omega, \mathcal{A}, \mathbb{P})$, indépendantes, de même loi, admettant pour densité une fonction g continue sur \mathbb{R} , nulle sur $]-\infty,0]$, de classe \mathbb{C}^1 sur $]0,+\infty[$ et possédant une dérivée à droite non nulle en 0, égale à c.
 - a) Justifier le développement limité, quand x tend vers 0 par valeurs supérieures :

$$\mathbb{P}\left(\left[X_{1} \leq x\right]\right) = \frac{c}{2}x^{2} + o(x^{2}) \quad .$$

- **b)** Pour tout entier $n \ge 1$, on note $Y_n = \inf\{X_1, X_2, \dots, X_n\}$.
 - i) Démontrer que la suite $(Y_n)_{n \in \mathbb{N}^*}$ converge en probabilité vers 0 quand n tend vers l'infini.
 - **ii**) Trouver une suite $(a_n)_{n \in \mathbb{N}^*}$ de nombres réels strictement positifs tels que $a_n Y_n$ converge en loi vers la variable aléatoire X de la question 2 quand n tend vers l'infini.

Sujet S 6 - Exercice sans préparation

Pour toute matrice
$$\mathbf{M} = \begin{pmatrix} a & b & c \\ a' & b' & c' \\ a'' & b'' & c'' \end{pmatrix}$$
 de $\mathcal{M}_3(\mathbb{R})$, on note $f(\mathbf{M})$ la matrice $\begin{pmatrix} c'' & b'' & a'' \\ c' & b' & a' \\ c & b & a \end{pmatrix}$.

- 1) Montrer que f est un automorphisme de l'espace vectoriel $\mathcal{M}_3(\mathbb{R})$.
- **2)** Trouver les valeurs propres de f.
- 3) a) Montrer que, pour toute matrice $M \in \mathcal{M}_3(\mathbb{R})$, le rang de f(M) est égal au rang de M.
 - **b)** Cette propriété de préservation du rang est-elle vraie pour tous les automorphismes de $\mathcal{M}_3(\mathbb{R})$?

Sujet S7 - Exercice

- 1) Question de cours : Énoncer le théorème de réduction des matrices symétriques réelles.
- 2) Soit A une matrice symétrique réelle d'ordre $n \ge 2$, ayant pour plus grande valeur propre, en valeur absolue $\lambda_{max}(A)$. Montrer que :

$$|\lambda_{max}(\mathbf{A})| = \max\left\{ \left| \frac{\langle \mathbf{A}x, x \rangle}{\langle x, x \rangle} \right|, \quad x \in \mathbb{R}^n \setminus \{0\} \right\} = \max\left\{ \frac{||\mathbf{A}x||}{||x||}, \quad x \in \mathbb{R}^n \setminus \{0\} \right\}.$$

où || || désigne la norme euclidienne sur \mathbb{R}^n issue du produit scalaire \langle , \rangle .

3) Soit A et B deux matrices symétriques réelles d'ordre n dont toutes les valeurs propres sont positives ou nulles. Soit $\alpha \ge 0$. On pose :

$$M = (I - \alpha A)(I + \alpha A)^{-1}, \quad N = (I - \alpha B)(I + \alpha B)^{-1}$$

où I désigne la matrice identité d'ordre n.

Déterminer les valeurs propres des matrices M et N en fonction de celles de A et B. Montrer en particulier que ces valeurs propres sont toutes réelles et de valeur absolue inférieure ou égale à 1.

- 4) On considère la matrice P = MN. Montrer que les valeurs propres complexes de la matrice P sont toutes de module inférieur ou égal à 1.
- 5) Trouver un exemple en dimension 2 de deux matrices quelconques ayant des valeurs propres de module inférieur ou égal à 1 et dont le produit ne vérifie pas cette propriété.

Sujet S7 - Exercice sans préparation

Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires définies sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$, indépendantes et de même loi. On suppose qu'il existe deux réels, $\alpha > 0$ et $\lambda > 0$ tels :

$$\mathbb{P}([X_1 > x]) \underset{x \to +\infty}{\sim} \frac{\alpha}{x^{\lambda}}$$

Montrer que la suite de variables aléatoires $(Z_n)_{n\geq 1}$ définie par :

pour tout
$$n \ge 1$$
, $Z_n = n^{-\frac{1}{\lambda}} \max(X_1, ..., X_n)$

converge en loi vers une loi à déterminer.

Sujet S8 - Exercice

Soit $(X_n)_{n\geqslant 1}$ une suite de variables aléatoires définies sur le même espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$, indépendantes et suivant toute la loi exponentielle de paramètre 1. On définit la suite de variables aléatoires $(Y_n)_{n\geqslant 1}$ par la relation :

$$Y_1 = X_1$$
, et $\forall n \in \mathbb{N}^*$, $Y_{n+1} = Y_n + \frac{1}{n+1}X_{n+1}$.

- 1) Question de cours : Définition et propriétés du produit de convolution de 2 densités.
- 2) Reconnaître la loi de $\frac{1}{n}X_n$.
- 3) Montrer que Y_2 possède une densité f_2 définie sur \mathbb{R} par la relation :

$$f_2(x) = \begin{cases} 2 \exp(-x)(1 - \exp(-x)) & \text{si} \quad x > 0 \\ 0 & \text{sinon} \end{cases}$$

4) Exprimer Y_n en fonction de $X_1, X_2, ..., X_n$.

Les variables aléatoires Y_n et $\frac{1}{n+1}X_{n+1}$ sont-elles indépendantes?

5) Montrer que pour tout $n \ge 1$, Y_n possède une densité f_n définie sur $\mathbb R$ par la relation :

$$f_n(x) = \begin{cases} n \exp(-x)(1 - \exp(-x))^{n-1} & \text{si} \quad x > 0 \\ 0 & \text{sinon} \end{cases}$$

(on pourra raisonner par récurrence sur n).

En déduire que Y_n et $Z_n = \max(X_1, X_2, ..., X_n)$ ont la même loi.

6) Calculer $\mathbb{E}(Y_n)$ et en donner un équivalent lorsque n tend vers l'infini (on pourra utiliser une comparaison série-intégrale).

Sujet S8 - Exercice sans préparation

Soit f un endomorphisme d'un espace vectoriel E de dimension finie $n \ge 1$ tel que :

$$(f - Id)^3 o (f - 2Id) = 0$$
 et $(f - Id)^2 o (f - 2Id) \neq 0$.

8

Etudier la diagonalisabilité de f.

Sujet S 9 - Exercice

On se place dans un espace probabilisé (Ω, \mathcal{A}, P) Soit X une variable aléatoire dont la loi dépend du paramètre réel inconnu $\lambda > 0$. Soit n un entier non nul et (X_1, X_2, \dots, X_n) un n-échantillon i.i.d. de cette loi.

On suppose que X suit la loi de Poisson de paramètre inconnu λ , et on pose :

$$\overline{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}.$$

On se propose d'étudier certaines propriétés de \overline{X}_n .

- 1) Question de cours : Donner la définition d'un estimateur de λ . Dans quel cas peut-on dire que cet estimateur est sans biais ?
- 2) Montrer que \overline{X}_n est un estimateur sans biais de λ .
- 3) On définit la fonction L de $\mathbb{N}^n \times \mathbb{R}_+^*$ dans \mathbb{R} par :

$$\forall (k_1, k_2, \dots, k_n, \lambda) \in \mathbb{N}^n \times \mathbb{R}^+_*, \ L(k_1, k_2, \dots, k_n, \lambda) = \prod_{i=1}^n P(X = k_i).$$

On pose alors, pour tout $(k_1, k_2, ..., k_n, \lambda) \in \mathbb{N}^n \times \mathbb{R}_+^*$, $G(k_1, k_2, ..., k_n, \lambda) = \ln(L(k_1, k_2, ..., k_n, \lambda))$.

- a) Vérifier que la fonction G est bien définie. Calculer $\frac{\partial G}{\partial \lambda}(k_1, k_2, ..., k_n, \lambda)$.
- **b)** Soit $(k_1, k_2, ..., k_n)$ un n-uplet fixé dans \mathbb{N}^n . Etudier les variations de la fonction $h: \lambda \to G(k_1, k_2, ..., k_n, \lambda)$. Que représente le réel $\frac{1}{n} \sum_{i=1}^n k_i$ pour \overline{X}_n ?
- 4) On considère la variable aléatoire $-\frac{\partial^2 G}{\partial \lambda^2}(X_1, X_2, \cdots, X_n, \lambda)$. Exprimer cette variable aléatoire à l'aide de \overline{X}_n . Calculer son espérance notée $I_n(\lambda)$ et déterminer une relation entre $I_n(\lambda)$ et la variance $V(\overline{X}_n)$.

Sujet S 9 - Exercice sans préparation

Soient F et G les sous-espaces vectoriels de \mathbb{R}^3 définis par :

F =
$$\{(x, y, z) \in \mathbb{R}^3 \mid x - y + z = 0 \text{ et } x + y = 0\}$$
 et G = $\{(x, y, z) \in \mathbb{R}^3 \mid x - y + z = 0\}$

Déterminer une base ainsi que la dimension de chacun de ces sous-espaces vectoriels. Déterminer $F \cap G$ et $F \cup G$.

Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est : $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ 0 & -1 & -2 \end{pmatrix}$.

9

Déterminer le noyau et l'image de f.

Sujet S 10 - Exercice

- 1) Question de cours : Enoncé du théorème de la limite centrée. Soit X une variable aléatoire définie sur un espace probabilisé $(\Omega, \mathscr{A}, \mathbb{P})$, qui suit une loi de Poisson de paramètre λ inconnu strictement positif.
 - Pour $n \in \mathbb{N}^*$, on dispose d'un n-échantillon i.i.d. $(X_1, X_2, ..., X_n)$ de la loi de X.

On pose :
$$Y_n = \sum_{i=1}^n X_i$$
 et $\overline{X}_n = \frac{Y_n}{n}$.

- 2) a) Rappeler sans démonstration, la loi, l'espérance et la variance de la variable aléatoire Y_n .
 - **b)** Montrer que \overline{X}_n est un estimateur sans biais et convergent du paramètre λ .
- 3) Soit $n \in \mathbb{N}^*$. Montrer que la loi conditionnelle du vecteur $(X_1, X_2, ..., X_n)$ sachant l'événement $[Y_n = k]$ où $k \in \mathbb{N}^*$, ne dépend pas de λ .
- **4)** On pose, pour tout $n \in \mathbb{N}^*$: $T_n = \sqrt{n} \frac{\overline{X}_n \lambda}{\sqrt{\lambda}}$.
 - a) Quelle est la limite en loi de la suite $(T_n)_{n \in \mathbb{N}^*}$? On note T cette limite en loi.
 - **b)** On admet que n est suffisamment grand pour approcher la loi de T_n par la loi de T. On note Φ la fonction de répartition de la loi normale centrée réduite. Soit α un réel donné vérifiant $0 < \alpha < 1$, et t_{α} le réel strictement positif tel que :

$$\Phi(t_\alpha)=1-\frac{\alpha}{2}.$$

Déterminer un intervalle de confiance pour λ au risque α .

Sujet S 10 - Exercice sans préparation

Soit n un entier supérieur ou égal à deux. Soit $A \in \mathcal{M}_n(\mathbb{R})$. Montrer que le rang de A est égal au rang de A A.

Sujet S 11 - Exercice

1) Question de cours : Dans une série statistique associée à un échantillon, définition de la moyenne empirique et de la variance empirique.

On observe conjointement deux caractères quantitatifs X et Y sur un échantillon de taille $n (n \ge 2)$ d'une population.

Ces observations sont donc constituées par un *n*-uplet $((x_1, y_1), (x_2, y_2), ..., (x_n, y_n))$ d'éléments de \mathbb{R}^2 . A chaque individu k de [1, n], on associe le couple d'observations (x_k, y_k) de \mathbb{R}^2 . On suppose que, pour tout $(i, j) \in [1, n]^2$, avec $i \neq j$, on a : $x_i \neq x_j$ et $y_i \neq y_j$. 2) Soit f la fonction définie sur \mathbb{R}^2 à valeurs réelles qui, à tout couple (a, b) de \mathbb{R}^2 , associe :

$$f(a,b) = \sum_{k=1}^{n} (y_k - (ax_k + b))^2.$$

- a) Justifier que f est de classe C^2 sur \mathbb{R}^2 .
- b) Ecrire le système d'équations (S) permettant de déterminer les points critiques
- c) On pose : $\overline{x} = \frac{1}{n} \sum_{k=1}^{n} x_k$. Etablir la formule : $\sum_{k=1}^{n} (x_k \overline{x})^2 = \left(\sum_{k=1}^{n} x_k^2\right) n\overline{x}^2$. En déduire que : $\left(\sum_{k=1}^{n} x_k^2\right) - n\overline{x}^2 > 0$.
- **d)** Résoudre le système (S). En déduire que f admet un unique point critique, noté (\hat{a}, \hat{b}) .
- e) Montrer que f admet un minimum local en (\hat{a}, \hat{b}) . Est-ce un minimum global pour f?
- 3) On note $r_{x,y}$ le coefficient de corrélation linéaire de X et Y. Montrer que : $|r_{x,y}| \le 1$.

Sujet S 11 - Exercice sans préparation

Soit p un entier supérieur ou égal à 2 et A une matrice de $\mathcal{M}_p(\mathbb{R})$ telle que : $2A^4 - 2A^3 + I = 0$ (I désigne la matrice identité d'ordre p et 0 la matrice nulle carrée d'ordre p).

- 1) Déterminer l'ensemble des entiers $n \in \mathbb{Z}$ pour lesquels la matrice $A + \frac{n}{n^2 + 1}$ I est inversible.
- 2) Existe-t-il un entier naturel n tel que $((n^2 + 1)A^2 + nA)^n = B$ où B est la matrice carrée d'ordre p définie par $B = \begin{pmatrix} n & n & \dots & n \\ \vdots & \vdots & \dots & \vdots \\ n & n & \dots & n \end{pmatrix}$?

Sujet S 12 - Exercice

- 1) Question de cours : Coefficient de corrélation linéaire ; définition et propriétés. Soit n un entier de \mathbb{N}^* et a_1, a_2, \ldots, a_n , des réels non nuls donnés.
- **2)** Soit f la fonction définie sur $(\mathbb{R}^*)^n$ par $f(x_1,...,x_n) = \sum_{j=1}^n x_j^2$, et soit D l'ensemble des solutions dans $(\mathbb{R}^*)^n$ de l'équation : $\sum_{j=1}^n a_j x_j = 1$.
 - a) Montrer que la restriction f_1 de f à D admet un unique point critique que l'on déterminera.
 - **b)** Etablir qu'en ce point critique, la fonction f_1 admet un minimum global.
- 3) Soit $Z_1, Z_2, ..., Z_n$, n variables aléatoires discrètes indépendantes définies sur un même espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$, et soit θ un paramètre réel non nul inconnu. On suppose que pour tout $j \in [1, n]$, $\mathbb{E}(Z_j) = \theta.a_j$ et $\mathbb{V}(Z_j) = 1$, où \mathbb{E} et \mathbb{V} désignent respectivement l'espérance et la variance.

On pose : $X_n = \sum_{j=1}^n \beta_j Z_j$, où $(\beta_1, \beta_2, ..., \beta_n)$ désigne un n-uplet de réels non nuls quelconques.

a) Déterminer la relation que doivent satisfaire $\beta_1, \beta_2, ..., \beta_n$ pour que, pour tout $\theta \in \mathbb{R}^*$, on ait : $\mathbb{E}(X_n) = \theta$.

On suppose dans la suite que cette condition est vérifiée.

- **b)** Calculer en fonction de $a_1, a_2, ..., a_n$, les valeurs $\beta_1^*, \beta_2^*, ..., \beta_n^*$ de $\beta_1, \beta_2, ..., \beta_n$, pour lesquelles $\mathbb{V}(X_n)$ est minimale.
- **4)** On pose : $X_n^* = \sum_{j=1}^n \beta_j^* Z_j$. Soit $\alpha_1, \alpha_2, ..., \alpha_n$, des réels non nuls tels que $Y_n = \sum_{j=1}^n \alpha_j Z_j$ soit un estimateur sans biais de θ. On note ρ le coefficient de corrélation linéaire de X_n^* et Y_n .

a) Montrer que $\rho > 0$.

b) Si $\rho = 1$, que peut-on en déduire sur les variables aléatoires X_n^* et Y_n ?

Sujet S 12 - Exercice sans préparation

Soit \mathscr{F} l'espace vectoriel des fonctions définies sur \mathbb{R} à valeurs réelles et E le sous-espace vectoriel de \mathscr{F} engendré par la famille $\mathscr{B} = (f_0, f_1, f_2, f_3)$ où $f_k : x \mapsto x^k e^{-x}$ pour $k \in \mathbb{N}$.

- 1) Montrer que ${\mathcal B}$ est une base de E. En déduire la dimension de E.
- 2) Soit D l'application définie sur E par :

$$\forall f \in E$$
, $D(f) = f' - f''$

où f' et f'' désignent les dérivées première et seconde de f.

Montrer que D est un endomorphisme de E et écrire sa matrice M dans la base \mathcal{B} .

12

3) M est-elle inversible? diagonalisable?

2 Sujets donnés en option économique

Sujet E1 - Exercice

Soit n un entier naturel non nul. Un jardinier plante n bulbes de tulipe(s) dans son jardin. Chaque bulbe a une probabilité $p \in]0,1[$ de donner une fleur. Lorsqu'une tulipe fleurit une année, elle refleurit toutes les années suivantes. Par contre si un bulbe n'a pas donné de fleur une année, il a toujours une probabilité p de donner une fleur l'année suivante. On suppose de plus que les floraisons des différents bulbes sont indépendantes. On pose q = 1 - p.

On suppose que l'expérience est modélisée par un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$. On appelle T la variable aléatoire réelle correspondant au nombre d'années nécessaires pour que tous les bulbes fleurissent.

- 1) Question de cours : Loi géométrique, définition, propriétés.
- 2) Pour tout $h \in [[1, n]]$, on définit la variable aléatoire T_h égale au nombre d'années nécessaires pour que le h-ième bulbe fleurisse.
 - a) Déterminer la loi de T_h .
 - **b)** Exprimer T en fonction de $T_1, T_2, ..., T_n$. En déduire la loi de T.
- 3) a) Calculer $\lim_{N \to +\infty} \sum_{k=1}^{n} \binom{n}{k} (-1)^k N(q^k)^N$.
 - **b)** Calculer $\lim_{N\to+\infty}\sum_{k=1}^{n}(-1)^k\binom{n}{k}\sum_{j=1}^{N}(q^k)^{j-1}$.
 - c) En déduire $\mathbb{E}(T)$ sous forme d'une somme.

Sujet E1 - Exercice sans préparation

Soit E un espace vectoriel de dimension finie $n \ge 1$. Déterminer les endomorphismes f de E diagonalisables qui vérifient Im $f \subset \operatorname{Ker} f$.

Sujet E 2 - Exercice

- I) Question de cours : Comparaison de fonctions au voisinage de l'infini.
- II) Soit g la fonction définie sur \mathbb{R}_+^* à valeurs réelles, telle que :

$$\forall x \in]0, +\infty[, \quad g(x) = x \ln^2(x).$$

- 1) Montrer que g réalise une bijection de $]1, +\infty[$ dans $]0, +\infty[$. Soit h la bijection réciproque de la restriction de g à l'intervalle $]1, +\infty[$.
- 2) a) Montrer que:

$$\forall x > 0$$
, $\ln h(x) + 2\ln(\ln h(x)) = \ln(x)$.

b) En déduire un équivalent simple de h(x) lorsque x tend vers l'infini. III) Soit X une variable aléatoire de densité f définie par :

$$f(x) = \begin{cases} \frac{1}{2g(|x|)} & \text{si} \quad |x| < \frac{1}{e} & \text{et} \quad x \neq 0 \\ 0 & \text{sinon} \end{cases}$$

- 1) Vérifier que f est bien une densité de probabilité.
- 2) Montrer que X possède une espérance et la calculer.
- 3) X possède-t-elle une variance?

Sujet E 2 - Exercice sans préparation

On note $\mathcal{B} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 .

Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base \mathscr{B} est $M = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.

Calculer $f(e_1 + e_2 + e_3)$, $f(e_2)$, $f(-e_1 + e_3)$.

Montrer que M est semblable à la matrice $M' = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$.

M est-elle diagonalisable?

Sujet E3 - Exercice

Soit X une variable aléatoire définie sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$, qui suit la loi binomiale $\mathcal{B}(n, p)$, avec $n \ge 2$ et 0 .

On définit sur $(\Omega, \mathcal{A}, \mathbb{P})$ une variable aléatoire Y de la façon suivante :

- pour tout k de [[1, n]], la réalisation de l'événement [X = k] entraı̂ne celle de l'événement [Y = k];
- la loi conditionnelle de Y sachant [X = 0] est la loi uniforme sur [[1, n]].
- 1) Question de cours : Le modèle binomial.
- 2) Déterminer la loi de probabilité de Y.
- 3) Calculer l'espérance $\mathbb{E}(Y)$ de Y.
- **4) a)** Déterminer la loi de probabilité conditionnelle de Y sachant $[X \neq 0]$.
 - **b)** Calculer l'espérance, notée $\mathbb{E}(Y/X \neq 0)$, de la loi conditionnelle de Y sachant $[X \neq 0]$.

Sujet E 3 - Exercice sans préparation

Soit A une matrice symétrique réelle d'ordre n ($n \in \mathbb{N}^*$) et vérifiant $A^k = I_n$. Que peut-on dire de A dans les cas suivants :

- \blacksquare *k* est un entier naturel impair?,
- \blacksquare *k* est un entier naturel pair non nul?

Sujet E 4 - Exercice

Dans cet exercice, toutes les variables aléatoires sont définies sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$.

- 1) Question de cours : Espérance et variance d'une variable aléatoire discrète finie ; définition et interprétation.
- 2) Soient a et b deux réels tels que a < b. On considère une variable aléatoire X (discrète ou possédant une densité) prenant toutes ses valeurs dans l'intervalle [a, b] et ayant un moment d'ordre 2.
 - a) Montrer que pour tout réel λ , on a la relation $\mathbb{V}(X) \leq \mathbb{E}\left([X \lambda]^2\right)$.
 - **b)** En déduire que $V(X) \le \frac{(b-a)^2}{4}$.
- 3) Dans la suite X est une variable aléatoire discrète ayant un moment d'ordre 2.
 - **a)** On suppose que X suit une loi uniforme sur {*a*, *b*}, c'est-à-dire :

$$\mathbb{P}(X = a) = \mathbb{P}(X = b) = 1/2.$$

Montrer alors qu'il y a égalité dans l'inégalité précédente.

b) Etude d'une réciproque : on suppose que $\mathbb{V}(X) = \frac{(b-a)^2}{4}$.

Montrer que $X(\Omega) = \{a, b\}$, puis que X suit une loi uniforme sur $\{a, b\}$.

4) Que signifie le résultat précédent? (on pourra s'appuyer sur l'interprétation de la variance).

Sujet E 4 - Exercice sans préparation

Soit X et Y deux variables aléatoires définies sur un même espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$, indépendantes, suivant la loi géométrique de paramètre $p \in]0,1[$.

Pour tout $\omega \in \Omega$, on pose :

$$M(\omega) = \begin{pmatrix} X(\omega) & 0 \\ 1 & Y(\omega) \end{pmatrix}$$

1) Déterminer

$$\mathbb{P}\left(\{\omega\in\Omega,M(\omega)\text{ inversible }\}\right).$$

2) Déterminer

$$\mathbb{P}\left(\left\{\omega\in\Omega\,,\,M(\omega)\;diagonalisable\,\right\}\right).$$

Sujet E 5 - Exercice

Soit n un entier supérieur ou égal à 2, et p et q deux réels de]0,1[tels que p+q=1. On considère deux variables aléatoires discrètes X et Y définies sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$. La loi du couple (X, Y) est donnée par :

pour tout (j, k) tels que $0 \le j \le n$ et $1 \le k \le n$,

$$\mathbb{P}\left([X=j] \cap [Y=k]\right) = \begin{cases} \binom{n}{k} p^k q^{n-k} & \text{si } k=j, j \neq 0 \\ \frac{q^n}{n} & \text{si } j=0 \\ 0 & \text{si } k \neq j \text{ et } j \neq 0 \end{cases}$$

- 1) Question de cours : Loi d'un couple de variables aléatoires discrètes. Lois marginales, lois conditionnelles.
- 2) a) Déterminer les lois marginales de X et Y respectivement.
 - **b)** Calculer $\mathbb{E}(Y)$.
- 3) Soit *j* un entier tel que $0 \le j \le n$.
 - a) Déterminer la loi conditionnelle de Y sachant [X = i].
 - **b)** Calculer l'espérance conditionnelle, notée $\mathbb{E}(Y/X = j)$, de la loi conditionnelle de Y sachant [X = j].
- **4) a)** Montrer que, pour tout $q \in]0,1[$, on a :

$$\mathbb{P}\left(\left[X=1\right]\cap\left[Y=1\right]\right)\neq\mathbb{P}\left(\left[X=1\right]\right)\times\mathbb{P}\left(\left[Y=1\right]\right).$$

Conclure.

- **b)** Calculer Cov(X, Y). Montrer qu'il existe une valeur de q pour laquelle Cov(X, Y) = 0.
- c) Conclure.

Sujet E 5 - Exercice sans préparation

Etudier la convergence de la suite $(u_n)_{n \in \mathbb{N}^*}$ définie par :

$$\forall n \in \mathbb{N}^*, \quad u_n = \frac{1}{n^{\alpha}} \sum_{k=1}^n k \ln \left(1 + \frac{k}{n} \right)$$

où α est un nombre réel,

- 1) dans le cas où $\alpha = 2$,
- 2) dans le cas où $\alpha \neq 2$.

Sujet E 6 - Exercice

- 1) Question de cours : Moment d'ordre r d'une variable aléatoire à densité; définition, existence.
- 2) Montrer qu'il existe deux réels A et B, indépendants de x, tels que, pour tout réel x > 0, on
- 3) On pose:

$$f(x) = \begin{cases} \frac{k}{x(x+1)} & \text{si } x \ge 1\\ 0 & \text{sinon} \end{cases}$$

où k est un paramètre réel.

- a) Déterminer *k* pour que *f* soit une densité d'une variable aléatoire X. Donner l'expression de la fonction de répartition de X.
- **b)** X admet-elle une espérance?
- 4) a) Déterminer la loi de T = [X] où [X] désigne la partie entière de X.
- **b)** En déduire la valeur de $\sum_{n=1}^{+\infty} \ln \left(1 + \frac{1}{n(n+2)} \right)$. **5)** Déterminer la loi de $Z = \frac{1}{x}$.
- **6) a)** Déterminer la loi de Y = X |X|.
 - **b)** Montrer que, pour tout entier $r \ge 1$, Y admet un moment d'ordre r.
 - c) Calculer $\mathbb{E}(Y)$.

Sujet E 6 - Exercice sans préparation

Soit
$$n \ge 2$$
 et $A = \begin{pmatrix} 0 & 1 & \dots & 1 \\ 1 & 0 & \dots & 1 \\ \vdots & & \ddots & \vdots \\ 1 & 1 & \dots & 0 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R}).$

Sujet E7 - Exercice

1) Question de cours : Définitions d'un estimateur, d'un estimateur sans biais d'un paramètre réel inconnu θ .

Soit Z une variable aléatoire discrète d'espérance $\mathbb{E}(Z) = \theta(\theta \in \mathbb{R}^*)$ et de variance $\mathbb{V}(Z) = 1$.

Pour n entier de \mathbb{N}^* , on dispose d'un n-échantillon ($\mathbb{Z}_1, \mathbb{Z}_2, \ldots, \mathbb{Z}_n$) de variables aléatoires indépendantes et de même loi que \mathbb{Z} , définies sur le même espace probabilisé ($\Omega, \mathcal{A}, \mathbb{P}$).

On pose : $\overline{Z}_n = \frac{1}{n} \sum_{j=1}^n Z_j$. On suppose que θ est inconnu.

- 2) a) La variable aléatoire \overline{Z}_n est-elle un estimateur sans biais de θ ?
 - **b**) Quel est le risque quadratique de \overline{Z}_n en θ ?
- 3) Soit β_1 , β_2 ,..., β_n des réels non nuls et $Y_n = \sum_{i=1}^n \beta_i Z_i$.
 - **a)** Déterminer la condition que doivent vérifier les réels β_1 , β_2 ,..., β_n , pour que, pour tout $\theta \in \mathbb{R}^*$, on ait : $\mathbb{E}(Y_n) = \theta$?

On suppose dans la suite que cette condition est vérifiée.

- **b)** Calculer $\mathbf{Cov}(\overline{Z}_n, Y_n)$ et $\mathbb{V}(\overline{Z}_n)$, où \mathbf{Cov} désigne la covariance et \mathbb{V} la variance. En déduire que $\mathbb{V}(\overline{Z}_n) \leq \mathbb{V}(Y_n)$. Interprétation.
- 4) Soit $\alpha_1, \alpha_2, ..., \alpha_n$ des réels non nuls.

On définit la variable aléatoire U_n par : $U_n = \sum_{j=1}^n \alpha_j Z_j$,

et on suppose que $\mathbb{E}(U_n) = \theta$ et $\mathbb{V}(U_n) = \frac{1}{n}$.

Montrer que $U_n = \overline{Z}_n$ avec une probabilité égale à 1.

Sujet E7 - Exercice sans préparation

Soit f la fonction définie sur $\mathbb{R}_+^* \times \mathbb{R}_+^*$, à valeurs réelles, par :

$$f(x,y) = \frac{x^2 + xy + \sqrt{y}}{x\sqrt{y}}.$$

- 1) Montrer que f est de classe C^2 sur $\mathbb{R}_+^* \times \mathbb{R}_+^*$.
- 2) Déterminer les points critiques de f.
- 3) Quelle est la nature de ces points critiques?

3 Sujets donnés en option littéraire BL

Sujet BL 1 - Exercice

- 1) Soit N un entier de \mathbb{N}^* . On lance N fois une pièce équilibrée. Soit $(\Omega, \mathscr{P}(\Omega), \mathbb{P})$ l'espace probabilisé associé à cette expérience.
 - On désigne par X (respectivement Y) la variable aléatoire égale au nombre de « Face » (respectivement de « Pile ») obtenus.
 - a) Question de cours : Définition de la covariance de deux variables aléatoires discrètes définies sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$.
 - **b)** Calculer **Cov**(X, Y). X et Y sont-elles indépendantes?

Dans la suite de l'exercice, le nombre N de parties est une variable aléatoire définie sur Ω . On modélise l'expérience par l'espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$.

- 2) On suppose que N suit une loi géométrique de paramètre $\frac{1}{2}$.
 - **a)** Calculer $\mathbb{P}(X = 0)$.
 - b) Les variables X et Y sont-elles indépendantes?
- 3) Dans cette question, on suppose que la variable aléatoire N suit une loi de Poisson de paramètre $\lambda > 0$.
 - a) Déterminer les lois de X et de Y. Rappeler les valeurs de l'espérance et de la variance de X.
 - **b)** En déduire la valeur de **Cov**(X, Y).
 - c) Les variables aléatoires X et Y sont-elles indépendantes?

Sujet BL1 - Exercice sans préparation

Soit E un espace vectoriel réel de dimension 5 et f un endomorphisme non nul de E tel que $f \circ f = 0$ (1).

- 1) Montrer que le rang de f est inférieur ou égal à 2. On rappelle que le rang de f est la dimension de l'image de f.
- 2) Montrer qu'il existe des endomorphismes de E vérifiant (1), dont le rang est égal à 1 (respectivement égal à 2).

Sujet BL 2 - Exercice

Soit H définie par :

$$H(x) = \int_{x}^{+\infty} \frac{e^{-t^{2}}}{2(1+t)} dt$$

- 1) Question de cours : Citer des conditions suffisantes de convergence pour une intégrale impropre.
- 2) Déterminer les valeurs de x pour lesquelles H(x) est convergente.
- 3) Etudier les variations de H sur $]0, +\infty[$ et déterminer sa limite en $+\infty$.
- 4) Démontrer que $\int_0^{+\infty} H(t) dt$ converge et exprimer cette intégrale en fonction de H(0).
- 5) Soit $(x_n)_n$ la suite définie par : $x_0 = 1$ et $x_{n+1} = H(x_n)$.
 - **a)** Prouver que : $\forall n \in \mathbb{N}, x_n \in \mathbb{R}_+^*$.
 - **b)** Montrer qu'il existe un unique $\alpha > 0$ tel que $H(\alpha) = \alpha$.
 - c) Montrer que : $\forall n \in \mathbb{N} \quad |x_{n+1} \alpha| \le \frac{1}{2} |x_n \alpha|$.
 - **d)** En déduire que $(x_n)_{n\in\mathbb{N}}$ est convergente.

Sujet BL2 - Exercice sans préparation

Soient $n \in \mathbb{N}^*$ et $p \in]0,1[$.

Soient X et Y deux variables aléatoires indépendantes définies sur le même espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$ et suivant toutes deux la loi binomiale de paramètres n et p.

Soit Z = X + Y et n_0 un entier de [1, 2n].

Déterminer la loi conditionnelle de X sachant $[Z = n_0]$. Reconnaître cette loi.

Sujets donnés en option technologique

Sujet T1 - Exercice

- 1) Question de cours : Enoncer le théorème d'encadrement (« des gendarmes ») sur les suites.
- 2) Soit $(u_n)_{n \in \mathbb{N}^*}$, la suite définie par : pour tout $n \ge 1$, $u_n = \int_0^1 \frac{dx}{1+x^n}$.
 - a) Montrer que $u_1 = \ln 2$.
 - **b)** Montrer que la suite $(u_n)_{n \in \mathbb{N}^*}$ est croissante.
 - **c)** Etablir la relation : pour tout n de \mathbb{N}^* , $u_n \le 1$.
 - **d)** La suite $(u_n)_{n \in \mathbb{N}^*}$ est-elle convergente?
 - e) Etablir pour tout n de \mathbb{N}^* , l'encadrement :

$$0 \le 1 - u_n \le \frac{1}{n+1}.$$

21

En déduire la limite de la suite $(u_n)_{n \in \mathbb{N}^*}$.

- 3) a) Montrer que pour tout réel positif u, on a : $\ln(1+u) \le u$.
 - **b)** En déduire que $\int_0^1 \ln(1+x^n) dx \le \frac{1}{n+1}$. **c)** Calculer $\lim_{n \to +\infty} \int_0^1 \ln(1+x^n) dx$.

Sujet T1 - Exercice sans préparation

Soit X une variable aléatoire suivant une loi géométrique de paramètre 1/2.

- 1) Rappeler les valeurs de l'espérance $\mathbb{E}(X)$ et de la variance $\mathbb{V}(X)$. En déduire $\mathbb{E}(X^2)$.
- **2) a)** A l'aide de la question 1), calculer $\lim_{N\to+\infty}\sum_{k=1}^N\frac{k}{2^k}$.
 - **b)** Etablir, pour tout n de \mathbb{N}^* , les inégalités : $\sum_{k=1}^{N} \frac{k}{2^k} \le 2$ et $\sum_{k=1}^{N} \frac{k^2}{2^k} \le 6$.

Sujet T 2 - Exercice

- 1) Question de cours : Définition et propriétés de la fonction de répartition F d'une variable aléatoire X à densité.
- **2)** Soit f la fonction définie sur \mathbb{R} par :

$$f(x) = \begin{cases} \frac{3}{x^4} & \text{si} \quad x \ge 1\\ 0 & \text{si} \quad x < 1 \end{cases}$$

- **a)** La fonction f est-elle continue sur \mathbb{R} ?
- **b)** Montrer que f est une densité de probabilité sur \mathbb{R} .

Soit X une variable aléatoire de densité f.

- 3) a) Etudier les variations de f. Représentation graphique de f dans le plan rapporté à un repère orthogonal.
 - **b)** Déterminer la fonction de répartition F de la variable aléatoire X.
 - c) Montrer que l'équation F(x) = 1/2 admet une unique solution que l'on déterminera.

22

4) Calculer l'espérance $\mathbb{E}(X)$ et la variance $\mathbb{V}(X)$ de la variable aléatoire X.

Sujet T 2 - Exercice sans préparation

Déterminer en fonction de a, toutes les matrices carrées M d'ordre 2 avec $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, qui vérifient les deux propriétés : $M^2 = M$ et $M = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$.